

Wave Power Take Off: Have we cracked it? Ballscrew Electro-Mechanical Generators

Luca Castellini - R&D Manager for Energy Applications UMBRA GROUP

Outline

Content of this presentation

The Electro-Mechanical Generator (EMG)

- Experimental investigations
- Considerations and Conclusions

Ocean European Europe Conference - Nantes, 25th October 2017

Advantages compared to state-of-the-art PTOs

Hydraulic systems

- No intermediate *power conversion step* (hydraulic)
- Reduced *number of components* (no plumbing, accumulators, pumps etc.)
- No use of pressurized fluids

Linear electrical systems

- Ferro-magnetic materials *active* at all time (cheaper for long-strokes)
- High *induction rate* at low linear speed (due to ballscrew conversion)

Geared mechanical

- Higher *efficiency* due to *rolling friction only*
- Higher *reliability* due to *rolling friction only*

Applicability in wave energy

Ocean European Europe Conference - Nantes, 25th October 2017

Development of a 2-5-10-20-60-100 kW units

Parameter	Units	2 kw	5 kW	10 kW	20 kW	60 kW	100 kW	250 kW
Application	-	-	Water proof	-	-	Water proof	Water proof	Under DEV.
Length pin-to-pin retracted	mm	410	410	500	850	2200	2200	Under DEV.
Useful Stroke	mm	220	220	135	380	1200	1000	Under DEV.
Peak Force	kN	15	25	180	35	120	150	Under DEV.

Ocean European Europe Conference - Nantes, 25th October 2017

Different test setups at Umbra Cuscinetti S.p.A. facilities (Extended and Performance tests)

- Full electric and HWiL benches using Electro-Mechanical Actuator (EMA)
- Electrical load provided by a resistive bench or regerative inverters
- Load cell, axial position, voltage and current transducers
- Different linear speed inputs: constant, sinusoidal and irregular

Dry rig test (up to 3m/s and 250KN)

UMBRAGROUP

Pressurized tank test (up to 40m depth working condition)

Wet tests video in regular waves

Dry test results – EMG characterization

Damping force, damping coefficient variable with load and speed

UMBRAGROUP

Comparison dry-wet tests: EMG average efficiency as function of axial speed

Constant effiency, no dependency on input speed profile

UMBRAGROUP

Wet test results – EMG average efficiency in irregular waves

No dependency on wave period and spectrum shape

UMBRAGROUP

Considerations and Conclusions

Ocean European Europe Conference - Nantes, 25th October 2017

Considerations

UMBRAGROUP

Comparison with others R.E. Where are waves?

*the invention never really caught on as the technology was not considered to be economically viable. Now wind power is economically competing with nuclear

Ocean European Europe Conference - Nantes, 25th October 2017

Considerations

Comparison with others R.E. Where are waves?

Wave power was delivered to an electrical grid for the first time

1910

First oscillating water column was built by Bochaux-Praceique to power his house

1799

First patent of a device designed to use ocean waves to generate power

2,000 BC According to historical data, windmills were used in China

Challenges

... to be fixed:

Challenge #1 – WEC concepts are not few as well as PTO solutions:

- need time to have a natural selection
- Some WECs need to demonstrate survival capability

Challenge #2 – Find an effective solution for converting AC into DC with a good power continuity:

- local storage
- transformation in other form (i.e. H₂)

Challenge #3 – no established standards are available in a mature stage:

• IEC TC 114

Conclusions

The Electro-Mechanical Generator (EMG)

- Electro-Mechanical Generator (EMG): linear motion into electricity
 - Integration of recirculating ballscrew and permanent magnet generator
- **Proven performance** under various load conditions
 - Efficiency between 70% and 80%
- Design and development of EMG from 2 kW up to 250 kW
- Ongoing customized development FOR/WITH WEC developers:
 - Linear PTO
 - Rotative PTO

THANK YOU FOR THE ATTENTION

LUCA CASTELLINI R&D Manager Energy Application lcastellini@umbragroup.com

